

		X	-
	7		
2			•

SUMMARY

- Events during normal network condition
 - Solution Asymmetry on compensated networks
 - ☑ Usage of Petersen coil controller
- Events during single earth-fault condition
 - Prevention of evolving permanent earth faults
 - Main types of permanent earth faults
- Different methods for detecting earth faults
 - Residual definite time overcurrent protection
 - Directional residual delayed overcurrent protection
 - ☑ Transient earth fault protection
 - ☑ New method: admittance earth fault protection

<section-header>

PROTECTION, AUTOMATION & CONTROL

 \mathbf{N}

09-Nov-17

SOURCES OF ASYMMETRY ON COMPENSATED NETWORKS

Asymmetrical arrangement of phase conductors

☑ Iron core structure of power transformers

- 🔀 Isolator's leakage resistance
- Asymmetrical elements connected to the network

PROTECTION, AUTOMATION & CONTROL

CONSEQUENCES OF ASYMMETRY

- ☑ Increased phase voltages
 - ☑ Increased risk of earth-faults

\Box It can block the tuning of the Petersen coil (because of high U₀)

- Petersen coil is not tuned
- Earth-fault current is increased
- Earth-fault is continuous
- Risk of dangerous step voltage is high
- ☑ Protection trip is needed

SYMMETRIZATION METHODS

- Cyclic transposition of the phase conductors
 - ☑ Needs reconstruction of the network
 - Mounting on several locations
 - ☑ Long time without power supply
- ☑ Continuous grounding resistor
 - Several disadvantages
- Added symmetrizing capacitors (provided by Protecta)
 - Mounting at the substation only
 - ☑ Lower costs
 - Short time without power supply

PROTECTION, AUTOMATION & CONTROL

USAGE OF PETERSEN COIL CONTROLLER

PRINCIPLE OF COMPENSATION (PETERSEN COIL)

PROTECTION, AUTOMATION & CONTROL

PROTECTION, AUTOMATION & CONTROL

ADVANTAGES OF USING PETERSEN COIL CONTROLLER

- Why is it important to use an automatical controller for the Petersen coil?
 - ☑ To check the level of compensation whenever it is needed
 - ☑ The network always changes: feeders can be connected or disconnected to the busbar any time
 - Because the capacity of the zero sequence network can change any time, the Petersen coil must follow the change of the capacity
 - ☑ It always keeps the Petersen coil in a well-tuned position

PROTECTION, AUTOMATION & CONTROL

RESULT OF THE MEASUREMENT: THE RESONANT CURVE

PROTECTION, AUTOMATION & CONTROL

PROTEC

DTRV-10 Contains 220 D> Ki 4 Contains KF LME kioldas Freihinden COFFE kineldes Coffee Ki 4 Aut vogleg ki VA bénitva Szek kéri héba Helyi

PREVENTION OF EVOLVING PERMANENT EARTH FAULTS

Protection, automation & control

WHAT CAN INCREASE THE RISK OF EVOLVING PERMANENT EARTH FAULTS?

 \boxtimes Use of grounding (shunt) resistor \rightarrow it increases the fault current, so the fault

becomes stable

1 4 1 6

-1 416

(F. szekunder értéke

 \checkmark The Petersen coil is not well tuned \rightarrow High under- or overcompensation

Short time for using the Petersen coil alone

PROTECTION, AUTOMATION & CONTROL

PROT

09-Nov-17

PROTECTION, AUTOMATION & CONTROL

WHY "EXACT" COMPENSATION CAN CAUSE PROBLEMS?

\square The U₀ is relatively high:

PROTECTION, AUTOMATION & CONTROL

PROT

WHAT CAN BE THE BEST SOLUTION? (IDEA OF PROTECTA)

✓ Use of shunt inductance, which is connected parallel to the Petersen coil → in case of possible earth fault the "exact" compensation can be approached:
ADAPTIVE COMPENSATION

PROT

<section-header><section-header>

PROTECTION, AUTOMATION & CONTROL

STABLE EARTH FAULTS WITH LOW FAULT RESISTANCE

The fault current flows continuously

☑ If the grounding resistance is switched on, the increased fault current is high enough for overcurrent protections to detect the earth fault

STABLE EARTH FAULTS WITH HIGH FAULT RESISTANCE

The fault current flows continuously

☑ If the grounding resistance is switched on, the increased fault current is NOT enough for overcurrent protections to detect the earth fault

INTERMITTENT EARTH FAULTS

- The fault current does not flow continuously
- The exact fault time is around 5-10msec, then the fault is cleared for many periods

☑ The time between faults can be 100msec – 500msec

RESIDUAL **DEFINITE TIME OVERCURRENT** PROTECTION

EARTH FAULT CURRENT-BOOSTER METHOD

☑ The symmetrical component network:

22

EARTH FAULT CURRENT-BOOSTER METHOD

The zero sequence voltage and currents during the earth fault:

RESIDUAL DEFINITE TIME OVERCURRENT PROTECTION

- \square The setting parameters are:
- Starting current (I_{start}) ☑ Definite time delay (T_{delay})

PROTECTION, AUTOMATION & CONTROL

RESIDUAL DEFINITE TIME OVERCURRENT PROTECTION

☑ Advantages

- ☑ Very simple solution
- ☑ The list of parameters is short
- ☑ It does not require U₀ voltage

🖂 Disadvantages

- Maintenance of the resistance is expensive
- ☑ It cannot detect earth faults with high fault resistance
- If the resistance is switched on, then the chance of clearing the earth fault by the Petersen coil is zero
- ☑ Dangerous step and touching voltage: the IEC-50522 standard does not allow to keep the increased fault current for a long time (the fault time can be maximum 100-200ms)

PROTECTION, AUTOMATION & CONTROL

PROT

DIRECTIONAL RESIDUAL DELAYED OVERCURRENT PROTECTION

 220
 >> Ki

 KiF
 LMB kiolding

 Kiminitiks
 Inde Ki

 Kiminitiks
 EGYSV kioldott

 Kiminitiks
 Scank körl höss

 Kiminitiks
 Scank körl höss

CARD DANKER

PROTECTION, AUTOMATION & CONTROL

 \square

PROTECTION, AUTOMATION & CONTROL

DIRECTIONAL RESIDUAL DELAYED OVERCURRENT PROTECTION

\bowtie The setting parameters are:

PROT

DIRECTIONAL RESIDUAL DELAYED OVERCURRENT PROTECTION

☑ It does not require any added primary or secondary element

☑ The earth fault current is not increased

Disadvantages

- It cannot detect intermittent earth faults
- ☑ If the resistance of the Petersen coil is low, then the wattmetric component of the fault current is

too low \rightarrow it is hard to set the characteristic well

It requires U_0 voltage (and of course I_0 current)

PROTECTION, AUTOMATION & CONTROL

PROT

31

TRANSIENT EARTH FAULT PROTECTION

The symmetrical component network at the transient:

TRANSIENT METHOD

PROTECTION, AUTOMATION & CONTROL

TRANSIENT EARTH FAULT PROTECTION

- ☑ The setting parameters are:
 - \boxtimes Minimal residual voltage (U_{0,min}) and current (I_{0,min})
 - Number of the counted peaks are and a second second
 - ☑ Reset time after the last detected peak (T_{reset})

TRANSIENT EARTH FAULT PROTECTION

☑ Advantages

- ☑ It does not require any added primary or secondary element
- ☑ The earth fault current is not increased
- ☑ Very simple solution
- ☑ The list of parameters is short

🖂 Disadvantages

- ☑ It cannot detect the stable earth faults with high fault resistance
- \square It requires U₀ voltage (and of course I₀ current)

36

PROTECTION, AUTOMATION & CONTROL

09-Nov-17

ADMITTANCE CHANGE METHOD

The symmetrical component network:

PROTECTION, AUTOMATION & CONTROL

ADMITTANCE CHANGE METHOD

 \square The measured zero sequence admittances (3I₀/3U₀):

		ΔY switched OFF	$\Delta \mathbf{Y}$ switched ON	Difference
Hea	Ithy feeder	YC	YC	0
Fau	Ilty feeder	-(YC+YP)	-(ΥC+ΥΡ+ΔΥ)	ΔΥ
area kindaka	EGYSV kieldott Aut vögleg kl VA bönitvb Sank köri hiba	10 TK kint 10 TK bent 10 kocsi kint 10 kocsi tent		

PROTECTION, AUTOMATION & CONTROL

ADMITTANCE EARTH FAULT PROTECTION

- ☑ The setting parameters are:
 - \boxtimes Minimal residual voltage (U_{0,min}) and current (I_{0,min})
 - Voltage and current transformer ratios
 - Admittance value of the added coil
 - Line parameters (for calculating the fault location only)

ALL DANCES

ADMITTANCE EARTH FAULT PROTECTION

☑ Advantages

- ☑ It can detect stable faults with high fault resistance
- The earth fault current is not increased
- ☑ It can calculate the exact fault resistance
- ☑ It can separate the earth faults (all the three types)
- ☑ It can be used for adaptive compensation (mentioned earlier)

Disadvantages

- It cannot detect the intermittent fault: it requires a different method. This different method is built to the admittance protection
- \square It requires U₀ voltage (and of course I₀ current)

